CDC6 interaction with ATR regulates activation of a replication checkpoint in higher eukaryotic cells.

نویسندگان

  • Kazumasa Yoshida
  • Nozomi Sugimoto
  • Satoko Iwahori
  • Takashi Yugawa
  • Mako Narisawa-Saito
  • Tohru Kiyono
  • Masatoshi Fujita
چکیده

CDC6, a replication licensing protein, is partially exported to the cytoplasm in human cells through phosphorylation by Cdk during S phase, but a significant proportion remains in the nucleus. We report here that human CDC6 physically interacts with ATR, a crucial checkpoint kinase, in a manner that is stimulated by phosphorylation by Cdk. CDC6 silencing by siRNAs affected ATR-dependent inhibition of mitotic entry elicited by modest replication stress. Whereas a Cdk-phosphorylation-mimicking CDC6 mutant could rescue the checkpoint defect by CDC6 silencing, a phosphorylation-deficient mutant could not. Furthermore, we found that the CDC6-ATR interaction is conserved in Xenopus. We show that the presence of Xenopus CDC6 during S phase is essential for Xenopus ATR to bind to chromatin in response to replication inhibition. In addition, when human CDC6 amino acid fragment 180-220, which can bind to both human and Xenopus ATR, was added to Xenopus egg extracts after assembly of the pre-replication complex, Xenopus Chk1 phosphorylation was significantly reduced without lowering replication, probably through a sequestration of CDC6-mediated ATR-chromatin interaction. Thus, CDC6 might regulate replication-checkpoint activation through the interaction with ATR in higher eukaryotic cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Norcantharidin inhibits DNA replication and induces mitotic catastrophe by degrading initiation protein Cdc6.

Cdc6, an essential initiation protein for DNA replication, also participates in the ATR checkpoint pathway and plays a vital role in tumorigenesis. It is involved in the androgen receptor (AR) signal transduction and promotes the malignant progression of prostate cancer (PCa). In this study, we report that norcantharidin (NCTD) induces the degradation of Cdc6 in DU145 PCa cells and as a result,...

متن کامل

Deregulated Cdc6 inhibits DNA replication and suppresses Cdc7-mediated phosphorylation of Mcm2–7 complex

Mcm2-7 is recruited to eukaryotic origins of DNA replication by origin recognition complex, Cdc6 and Cdt1 thereby licensing the origins. Cdc6 is essential for origin licensing during DNA replication and is readily destabilized from chromatin after Mcm2-7 loading. Here, we show that after origin licensing, deregulation of Cdc6 suppresses DNA replication in Xenopus egg extracts without the involv...

متن کامل

Cdc6 contributes to cisplatin-resistance by activation of ATR-Chk1 pathway in bladder cancer cells

High activation of DNA damage response is implicated in cisplatin (CDDP) resistance which presents as a serious obstacle for bladder cancer treatment. Cdc6 plays an important role in the malignant progression of tumor. Here, we reported that Cdc6 expression is up-regulated in bladder cancer tissues and is positively correlated to high tumor grade. Cdc6 depletion can attenuate the malignant prop...

متن کامل

CDC6: from DNA replication to cell cycle checkpoints and oncogenesis.

Cell division cycle 6 (CDC6) is an essential regulator of DNA replication in eukaryotic cells. Its best-characterized function is the assembly of prereplicative complexes at origins of replication during the G(1) phase of the cell division cycle. However, CDC6 also plays important roles in the activation and maintenance of the checkpoint mechanisms that coordinate S phase and mitosis, and recen...

متن کامل

The ATR-mediated S phase checkpoint prevents rereplication in mammalian cells when licensing control is disrupted

DNA replication in eukaryotic cells is tightly controlled by a licensing mechanism, ensuring that each origin fires once and only once per cell cycle. We demonstrate that the ataxia telangiectasia and Rad3 related (ATR)-mediated S phase checkpoint acts as a surveillance mechanism to prevent rereplication. Thus, disruption of licensing control will not induce significant rereplication in mammali...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 123 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2010